Page Content
Coherent ultrafast dynamics [1]
- © Kolarczik, TUB
Coherence in light–matter interaction is a necessary ingredient
if light is used to control the quantum state of a material system.
Quantum coherence and coherent dynamics in well-characterized,
selected quantum systems, primarily III-V SK-quantum dots, is being
analyzed and controlled.
more to: Coherent ultrafast
dynamics [2]
Nano-optoelectronics [3]
- © Herzog, TUB
Nanoscaled quantum systems for potential use as ultrafast
amplifiers, fast optical switches, modulators or lasers, single photon
sources or solid-state based qubits are investigated. The gain
materials integrated are: self assembled and submonolayer quantum dots
and (multi-) quantum well structures. The research is embedded in the
collaborative research center SFB 787 at TU Berlin.
more to:
Nano-optoelectronics [4]
Opto-electronic properties of semiconductor nanoparticles
[5]
- © Scott, TUB
Semiconductor nanoparticles have unique properties due to spatial
confinement and shape control affecting the exciton wave function in
the linear as well as in the nonlinear optical regime. The electronic
structure of strongly confined semiconductor materials with high
nonlinear coefficients makes them ideally suited for two-photon
absorption (TPA) based effects, e.g. for 3D optical data storage
elements or biological cell imaging.
more to: Opto-electronic
properties of semiconductor nanoparticles [6]
Nonlinear plasmonics [7]
- © Grosse, TUB
Surface plasmons are a hybrid of a charge density wave with an
electromagnetic wave that propagate along a metal-dielectric
interface. Surface plasmons offer some unique properties, such as
field confinement and enhancement. We study the nonlinear frequency
conversion that occurs when femto-second pulses of laser light excite
surface plasmons in metal nanofilms and structures. We seek to uncover
the microscopic origin of the plasmon-photon interaction and to apply
that knowledge to new optical devices.
more to: Nonlinear
plasmonics [8]
Silicon photonics [9]
- © Meister/Schweda
Die Symbiose zwischen Halbleitertechnik und Photonik stellt aktuell
die Königsklasse der Forschung im Bereich der Prozessortechnik dar.
Dabei werden aktive und passive optoelektronische Bauelemente in
Waferstrukturen eingebettet, um Aufgaben der Signalverarbeitung zu
übernehmen, welche dementsprechend mit Lichtgeschwindigkeit
ausgeführt werden.
more to: Silicon
photonics [10]
Fiber optics [11]
- © TUB
Die
Beschichtung von Glasfaserendflächen mit optischen Schichtsystemen
lässt in der Nachrichtentechnik sowohl neue Möglichkeiten als auch
Herausforderungen entstehen. So können antireflektive (AR) Schichten
die Verluste reduzieren oder hochreflektive (HR) Schichten als
Kavität innerhalb von Glasfasern zum Einsatz kommen.
Weiterhin können Fabry-Perot-Filter direkt auf Glasfaserendflächen
angebracht werden und erlangen große Bedeutung für Applikationen in
der Nachrichtentechnik und Datensensorik.
more to: Fiber optics
[12]
------
Links: ------
[1]
https://www.ioap.tu-berlin.de/menue/arbeitsgruppen/
ag_wo/research/coherent_ultrafast_dynamics/parameter/en
/font3/maxhilfe/
[2]
https://www.ioap.tu-berlin.de/menue/arbeitsgruppen/
ag_wo/research/coherent_ultrafast_dynamics/parameter/en
/font3/maxhilfe/
[3]
https://www.ioap.tu-berlin.de/menue/arbeitsgruppen/
ag_wo/research/nano_optoelectronics/parameter/en/font3/
maxhilfe/
[4]
https://www.ioap.tu-berlin.de/menue/arbeitsgruppen/
ag_wo/research/nano_optoelectronics/parameter/en/font3/
maxhilfe/
[5]
https://www.ioap.tu-berlin.de/menue/arbeitsgruppen/
ag_wo/research/opto_electronic_properties_of_semiconduc
tor_nanoparticles/parameter/en/font3/maxhilfe/
[6]
https://www.ioap.tu-berlin.de/menue/arbeitsgruppen/
ag_wo/research/opto_electronic_properties_of_semiconduc
tor_nanoparticles/parameter/en/font3/maxhilfe/
[7]
https://www.ioap.tu-berlin.de/menue/arbeitsgruppen/
ag_wo/research/nonlinear_plasmonics/parameter/en/font3/
maxhilfe/
[8]
https://www.ioap.tu-berlin.de/menue/arbeitsgruppen/
ag_wo/research/nonlinear_plasmonics/parameter/en/font3/
maxhilfe/
[9]
https://www.ioap.tu-berlin.de/menue/arbeitsgruppen/
ag_wo/research/silicon_photonics/parameter/en/font3/max
hilfe/
[10]
https://www.ioap.tu-berlin.de/menue/arbeitsgruppen
/ag_wo/research/silicon_photonics/parameter/en/font3/ma
xhilfe/
[11]
https://www.ioap.tu-berlin.de/menue/arbeitsgruppen
/ag_wo/research/fiber_optics/parameter/en/font3/maxhilf
e/
[12]
https://www.ioap.tu-berlin.de/menue/arbeitsgruppen
/ag_wo/research/fiber_optics/parameter/en/font3/maxhilf
e/